Deciphering Intrinsic Inter-subunit Couplings that Lead to Sequential Hydrolysis of F1-ATPase Ring.
نویسندگان
چکیده
Rotary sequential hydrolysis of the metabolic machine F1-ATPase is a prominent manifestation of high coordination among multiple chemical sites in ring-shaped molecular machines, and it is also functionally essential for F1 to tightly couple chemical reactions and central γ-shaft rotation. High-speed AFM experiments have identified that sequential hydrolysis is maintained in the F1 stator ring even in the absence of the γ-rotor. To explore the origins of intrinsic sequential performance, we computationally investigated essential inter-subunit couplings on the hexameric ring of mitochondrial and bacterial F1. We first reproduced in stochastic Monte Carlo simulations the experimentally determined sequential hydrolysis schemes by kinetically imposing inter-subunit couplings and following subsequent tri-site ATP hydrolysis cycles on the F1 ring. We found that the key couplings to support the sequential hydrolysis are those that accelerate neighbor-site ADP and Pi release upon a certain ATP binding or hydrolysis reaction. The kinetically identified couplings were then examined in atomistic molecular dynamics simulations at a coarse-grained level to reveal the underlying structural mechanisms. To do that, we enforced targeted conformational changes of ATP binding or hydrolysis to one chemical site on the F1 ring and monitored the ensuing conformational responses of the neighboring sites using structure-based simulations. Notably, we found asymmetrical neighbor-site opening that facilitates ADP release upon enforced ATP binding. We also captured a complete charge-hopping process of the Pi release subsequent to enforced ATP hydrolysis in the neighbor site, confirming recent single-molecule analyses with regard to the role of ATP hydrolysis in F1. Our studies therefore elucidate both the coordinated chemical kinetics and structural dynamics mechanisms underpinning the sequential operation of the F1 ring.
منابع مشابه
Inhibition of ATP Hydrolysis by Thermoalkaliphilic F1Fo-ATP Synthase Is Controlled by the C Terminus of the ε Subunit
The F1Fo-ATP synthases of alkaliphilic bacteria exhibit latent ATPase activity, and for the thermoalkaliphile Bacillus sp. strain TA2.A1, this activity is intrinsic to the F1 moiety. To study the mechanism of ATPase inhibition, we developed a heterologous expression system in Escherichia coli to produce TA2F1 complexes from this thermoalkaliphile. Like the native F1Fo-ATP synthase, the recombin...
متن کاملInhibition of Mitochondrial F1-ATPase Activity by an Anti-a Subunit Monoclonal Antibody Which Modifies Interactions between Catalytic
A monoclonal antibody, 7B3, specific to the a subunit of the mitochondrial ATPase-ATP synthase inhibited the rate of ATP hydrolysis by either soluble F1 or electron transport particles up to a maximum of 75%. However, 7B3 did not modify the rate of ITP hydrolysis. In addition, the apparent K , for MgATP extrapolated at high ATP concentrations had the same value in the absence as in the presence...
متن کاملFluctuation theorem applied to F1-ATPase.
In recent years, theories of nonequilibrium statistical mechanics such as the fluctuation theorem (FT) and the Jarzynski equality have been experimentally applied to micro and nanosized systems. However, so far, these theories are seldom applied to autonomous systems such as motor proteins. In particular, representing the property of entropy production in a small system driven out of equilibriu...
متن کاملComplete inhibition and partial Re-activation of single F1-ATPase molecules by tentoxin: new properties of the re-activated enzyme.
During hydrolysis of ATP, the gamma subunit of the rotary motor protein F(1)-ATPase rotates within a ring of alpha(3)beta(3) subunits. Tentoxin is a phyto-pathogenic cyclic tetrapeptide, which influences F(1)-ATPase activity of sensitive species. At low concentrations, tentoxin inhibits ATP hydrolysis of ensembles of F(1) molecules in solution. At higher concentrations, however, ATP hydrolysis ...
متن کاملThe unbinding of ATP from F1-ATPase.
Using molecular dynamics, we study the unbinding of ATP in F(1)-ATPase from its tight binding state to its weak binding state. The calculations are made feasible through use of interpolated atomic structures from Wang and Oster [Nature 1998, 396: 279-282]. These structures are applied to atoms distant from the catalytic site. The forces from these distant atoms gradually drive a large primary r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 113 7 شماره
صفحات -
تاریخ انتشار 2017